Electrically-driven carbon nanotube-based plasmonic laser on silicon

نویسندگان

  • Ke Liu
  • Volker J. Sorger
چکیده

Photonic signal processing requires efficient on-chip light sources with higher modulation bandwidths. Today’s conventional fastest semiconductor diode lasers exhibit modulation speeds only on the order of a few tens of GHz due to gain compression effects and parasitic electrical capacitances. Here we theoretically show an electrically-driven carbon nanotube (CNT)-based laser utilizing strong light-matter-interaction via monolithic integration into Silicon photonic crystal nanobeam (PCNB) cavities. The laser is formed by single-walled CNTs inside a combo-cavity consisting of both a plasmonic metal-oxide-semiconductor hybrid mode embedded in the one dimensional PCNB cavity. The emission originates from interband recombinations of electrostatically-doped nanotubes depending on the tubes’ chirality towards matching the C-band. Our simulation results show that the laser operates at telecom frequencies resulting in a power output > 3 (100) μW and > 100 (1000)’s GHz modulation speed at 1 × (10 × ) threshold. Such monolithic integration schemes provide an alternative promising approach for light source in future photonic integrated circuits. ©2015 Optical Society of America OCIS codes: (250.5960) Semiconductor lasers; (350.4238) Nanophotonics and photonic crystals; (250.5403) Plasmonics. References and links 1. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008). 2. M. Bansal, R. Srivastava, C. Lal, M. N. Kamalasanan, and L. S. Tanwar, “Carbon nanotube-based organic light emitting diodes,” Nanoscale 1(3), 317–330 (2009). 3. X. Wang, L. Zhang, Y. Lu, H. Dai, Y. K. Kato, and E. Pop, “Electrically driven light emission from hot singlewalled carbon nanotubes at various temperatures and ambient pressures,” Appl. Phys. Lett. 91(26), 261102 (2007). 4. E. Gaufrès, N. Izard, X. Le Roux, D. Marris-Morini, S. Kazaoui, E. Cassan, and L. Vivien, “Optical gain in carbon nanotubes,” Appl. Phys. Lett. 96(23), 231105 (2010). 5. Y. Miyauchi, M. Iwamura, S. Mouri, T. Kawazoe, M. Ohtsu, and K. Matsuda, “Brightening of excitons in carbon nanotubes on dimensionality modification,” Nat. Photonics 7(9), 715–719 (2013). 6. T. Mueller, M. Kinoshita, M. Steiner, V. Perebeinos, A. A. Bol, D. B. Farmer, and P. Avouris, “Efficient narrow-band light emission from a single carbon nanotube p-n diode,” Nat. Nanotechnol. 5(1), 27–31 (2010). 7. S. Wang, Q. Zeng, L. Yang, Z. Zhang, Z. Wang, T. Pei, L. Ding, X. Liang, M. Gao, Y. Li, and L. M. Peng, “High-performance carbon nanotube light-emitting diodes with asymmetric contacts,” Nano Lett. 11(1), 23–29 (2011). 8. E. Gaufrès, N. Izard, A. Noury, X. Le Roux, G. Rasigade, A. Beck, and L. Vivien, “Light emission in Silicon from carbon nanotubes,” ACS Nano 6(5), 3813–3819 (2012). 9. S. Khasminskaya, F. Pyatkov, B. S. Flavel, W. H. Pernice, and R. Krupke, “Waveguide-integrated light-emitting carbon nanotubes,” Adv. Mater. 26(21), 3465–3472 (2014). 10. S. Bahena-Garrido, N. Shimoi, D. Abe, T. Hojo, Y. Tanaka, and K. Tohji, “Plannar light source using a phosphor screen with single-walled carbon nanotubes as field emitters,” Rev. Sci. Instrum. 85(10), 104704 (2014). #242736 Received 9 Jun 2015; revised 26 Jul 2015; accepted 28 Jul 2015; published 4 Aug 2015 © 2015 OSA 1 Sep 2015 | Vol. 5, No. 9 | DOI:10.1364/OME.5.001910 | OPTICAL MATERIALS EXPRESS 1910 11. D. Yu, H. Liu, L. M. Peng, and S. Wang, “Flexible light-emitting devices based on chirality-sorted semiconducting carbon nanotube films,” ACS Appl. Mater. Interfaces 7(6), 3462–3467 (2015). 12. G. S. Tulevski, A. D. Franklin, D. Frank, J. M. Lobez, Q. Cao, H. Park, A. Afzali, S. J. Han, J. B. Hannon, and W. Haensch, “Toward high-performance digital logic technology with carbon nanotubes,” ACS Nano 8(9), 8730–8745 (2014). 13. M. S. Arnold, A. A. Green, J. F. Hulvat, S. I. Stupp, and M. C. Hersam, “Sorting carbon nanotubes by electronic structure using density differentiation,” Nat. Nanotechnol. 1(1), 60–65 (2006). 14. J. A. Fagan, M. L. Becker, J. Chun, P. Nie, B. J. Bauer, J. R. Simpson, A. Hight-Walker, and E. K. Hobbie, “Centrifugal length separation of carbon nanotubes,” Langmuir 24(24), 13880–13889 (2008). 15. G. S. Tulevski, A. D. Franklin, and A. Afzali, “High purity isolation and quantification of semiconducting carbon nanotubes via column chromatography,” ACS Nano 7(4), 2971–2976 (2013). 16. C. Y. Khripin, J. A. Fagan, and M. Zheng, “Spontaneous partition of carbon nanotubes in polymer-modified aqueous phases,” J. Am. Chem. Soc. 135(18), 6822–6825 (2013). 17. S. Shekhar, P. Stokes, and S. I. Khondaker, “Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis,” ACS Nano 5(3), 1739–1746 (2011). 18. A. Vijayaraghavan, S. Blatt, D. Weissenberger, M. Oron-Carl, F. Hennrich, D. Gerthsen, H. Hahn, and R. Krupke, “Ultra-large-scale directed assembly of single-walled carbon nanotube devices,” Nano Lett. 7(6), 1556– 1560 (2007). 19. Y. Che, H. Chen, H. Gui, J. Liu, B. Liu, and C. Zhou, “Review of carbon nanotube nanoelectronics and macroelectronics,” Semicond. Sci. Technol. 29(7), 073001 (2014). 20. S. J. Tans, A. R. M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature 393(6680), 49–52 (1998). 21. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and P. Avouris, “Singleand multi-wall carbon nanotube fieldeffect transistors,” Appl. Phys. Lett. 73(17), 2447–2449 (1998). 22. J. A. Misewich, R. Martel, P. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff, “Electrically induced optical emission from a carbon nanotube FET,” Science 300(5620), 783–786 (2003). 23. G. H. Duan, C. Jany, A. L. Liepvre, A. Accard, M. Lamponi, D. Make, P. Kaspar, G. Levaufre, N. Girard, F. Lelarge, J. M. Fedeli, A. Descos, B. B. Bakir, S. Messaoudene, D. Bordel, S. Menezo, G. D. Valicourt, S. Keyvaninia, G. Roelkens, D. V. Thourhout, D. J. Thomson, F. Y. Gardes, and G. T. Reed, “Hybrid III-V on Silicon lasers for photonic integrated circuits on Silicon,” IEEE J. Sel. Top. Quantum Electron. 20(4), 6100213 (2014). 24. S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vučković, A. Majumdar, and X. Xu, “Monolayer semiconductor nanocavity lasers with ultralow thresholds,” Nature 520(7545), 69–72 (2015). 25. K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express 21(4), 4728– 4733 (2013). 26. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). 27. V. J. Sorger, N. Pholchai, E. Cubukcu, R. F. Oulton, P. Kolchin, C. Borschel, M. Gnauck, C. Ronning, and X. Zhang, “Strongly enhanced molecular fluorescence inside a nanoscale waveguide gap,” Nano Lett. 11(11), 4907–4911 (2011). 28. K. Liu, C. R. Ye, S. Khan, and V. J. Sorger, “Review and perspective on ultra-fast and wavelength-size electrooptic modulators,” Laser Photonics Rev. 9(2), 172–194 (2015). 29. K. Y. Jeong, Y. S. No, Y. Hwang, K. S. Kim, M. K. Seo, H. G. Park, and Y. H. Lee, “Electrically driven nanobeam laser,” Nat. Commun. 4, 2822 (2013). 30. K. Liu and V. J. Sorger, “Enhanced interaction strength for a square plasmon resonator embedded in a photonic crystal cavity,” J. Nanophotonics 9(1), 093790 (2015). 31. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. De La Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16(16), 12084–12089 (2008). 32. Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-high Q photonic crystal nanobeam cavities,” Opt. Express 19(19), 18529–18542 (2011). 33. P. Rai, N. Hartmann, J. Berthelot, J. Arocas, G. Colas des Francs, A. Hartschuh, and A. Bouhelier, “Electrical excitation of surface plasmons by an Individual carbon nanotube transistor,” Phys. Rev. Lett. 111(2), 026804 (2013). 34. A. Vijayaraghavan, F. Hennrich, N. Stürzl, M. Engel, M. Ganzhorn, M. Oron-Carl, C. W. Marquardt, S. Dehm, S. Lebedkin, M. M. Kappes, and R. Krupke, “Toward single-chirality carbon nanotube device arrays,” ACS Nano 4(5), 2748–2754 (2010). 35. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005). 36. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69(1–2), 681 (1946). 37. L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19(7), 6284–6289 (2011). #242736 Received 9 Jun 2015; revised 26 Jul 2015; accepted 28 Jul 2015; published 4 Aug 2015 © 2015 OSA 1 Sep 2015 | Vol. 5, No. 9 | DOI:10.1364/OME.5.001910 | OPTICAL MATERIALS EXPRESS 1911 38. T. Yoshie, J. Vučković, A. Scherer, H. Chen, and D. Deppe, “High quality two-dimensional photonic crystal slab cavities,” Appl. Phys. Lett. 79(26), 4289 (2001). 39. E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Broadband Purcell enhancement in plasmonic ring cavities,” Phys. Rev. B 82(16), 165419 (2010). 40. R. M. Ma, R. F. Oulton, V. J. Sorger, and X. Zhang, “Plasmon lasers: coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013). 41. C. Y. Lu, C. Y. Ni, M. Zhang, S. L. Chuang, and D. H. Bimberg, “Metal-cavity surface-emitting microlasers with size reduction: theory and experiment,” IEEE J. Sel. Top. Quantum Electron. 19(5), 1701809 (2013). 42. J. M. Marulanda and A. Srivastava, “Carrier density and effective mass calculations in carbon nanotubes,” Phys. Status Solidi 245(11), 2558–2562 (2008). 43. P. Lalanne, C. Sauvan, and J. P. Hugonin, “Photon confinement in photonic crystal nanocavities,” Laser Photonics Rev. 2(6), 514–526 (2008). 44. D. A. Genov, R. F. Oulton, G. Bartal, and X. Zhang, “Anomalous spectral scaling of light emission rates in lowdimensional metallic nanostructures,” Phys. Rev. B 83(24), 245312 (2011).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrostatically Driven Nanoballoon Actuator.

We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatic...

متن کامل

Heterogeneous integration of electrically driven microdisk based laser sources for optical interconnects and photonic ICs.

A new approach for an electrically driven microlaser based on a microdisk transferred onto Silicon is proposed. The structure is based on a quaternary InGaAsP p-i-n junction including three InAsP quantum wells, on a thin membrane transferred onto silicon by molecular bonding. A p++/n++ tunnel junction is used as the p-type contact. The technological procedure is described and first experimental...

متن کامل

Carbon nanotube biconvex microcavities

Articles you may be interested in Electrically driven, narrow-linewidth blackbody emission from carbon nanotube microcavity devices Appl. Optical microcavities with a thiol-functionalized gold nanoparticle polymer thin film coating Appl.

متن کامل

Single Walled Carbon Nanotube Effects on Mixed Convection heat Transfer in an Enclosure: a LBM Approach

The effects of Single Walled Carbon Nanotube (SWCNT) on mixed convection in a cavity are investigated numerically. The problem is studied for different Richardson numbers (0.1-10), volume fractions of nanotubes (0-1%), and aspect ratio of the cavity (0.5-2.5) when the Grashof number is equal to 103. The volume fraction of added nanotubes to Water as base fluid are lowers than 1% to make dilute ...

متن کامل

Ballistic (n,0) Carbon Nanotube Field Effect Transistors' I-V Characteristics: A Comparison of n=3a+1 and n=3a+2

Due to emergence of serious obstacles by scaling of the transistors dimensions, it has been obviously proved that silicon technology should be replaced by a new one having a high ability to overcome the barriers of scaling to nanometer regime. Among various candidates, carbon nanotube (CNT) field effect transistors are introduced as the most promising devices for substituting the silicon-based ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015